# 802.11b/g/n Wireless LAN INIC Card

**User's Manual** 

Version: 1.0 (Aug, 2008)

## COPYRIGHT

Copyright ©2008/2009 by this company. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of this company

This company makes no representations or warranties, either expressed or implied, with respect to the contents hereof and specifically disclaims any warranties, merchantability or fitness for any particular purpose. Any software described in this manual is sold or licensed "as is". Should the programs prove defective following their purchase, the buyer (and not this company, its distributor, or its dealer) assumes the entire cost of all necessary servicing, repair, and any incidental or consequential damages resulting from any defect in the software. Further, this company reserves the right to revise this publication and to make changes from time to time in the contents thereof without obligation to notify any person of such revision or changes.

## Federal Communication Commission Interference Statement

#### FCC Part 15

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- 1. Reorient or relocate the receiving antenna.
- 2. Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- 4. Consult the dealer or an experienced radio technician for help.

#### **FCC Caution**

This equipment must be installed and operated in accordance with provided instructions and a minimum 20 cm spacing must be provided between computer mounted antenna and person's body (excluding extremities of hands, wrist and feet) during wireless modes of operation.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Any changes or modifications not expressly approved by the party responsible for compliance could void the authority to operate equipment.

#### Federal Communication Commission (FCC) Radiation Exposure Statement

This equipment complies with FCC radiation exposure set forth for an uncontrolled environment. In order to avoid the possibility of exceeding the FCC radio frequency exposure limits, human proximity to the antenna shall not be less than 20cm (8 inches) during normal operation.

The antenna(s) used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

The equipment version marketed in US is restricted to usage of the channels 1-11 only.

## **R&TTE Compliance Statement**

This equipment complies with all the requirements of DIRECTIVE 1999/5/EC OF THE EUROPEAN PARLIAMENT AND THE COUNCIL of March 9, 1999 on radio equipment and telecommunication terminal Equipment and the mutual recognition of their conformity (R&TTE).

The R&TTE Directive repeals and replaces in the directive 98/13/EEC (Telecommunications Terminal Equipment and Satellite Earth Station Equipment) As of April 8, 2000.

#### Safety

This equipment is designed with the utmost care for the safety of those who install and use it. However, special attention must be paid to the dangers of electric shock and static electricity when working with electrical equipment. All guidelines of this and of the computer manufacture must therefore be allowed at all times to ensure the safe use of the equipment.

#### EU Countries Intended for Use

The ETSI version of this device is intended for home and office use in Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, Sweden, and the United Kingdom.

The ETSI version of this device is also authorized for use in EFTA member states: Iceland, Liechtenstein, Norway, and Switzerland.

#### EU Countries Not intended for use

None.

#### 1. Introduction

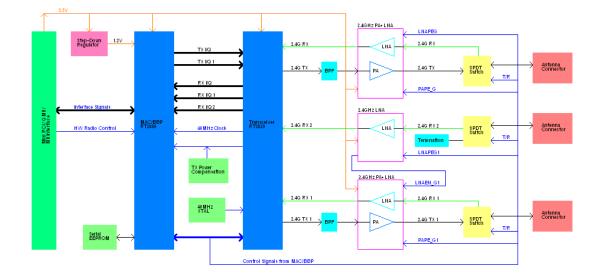
#### Scope

This document describes the IN-7858Mn 802.11b/g/n INIC card hardware and software specifications.

#### Product Features

- Comply with 802.11n draft and 802.11b/g standards.
- High data transfer rate up to 300Mbps.
- Supports farther coverage, less dead spaces and higher throughput with MIMO technology.
- Supports 11n Router, 11n ADSL Router, 11n IAD Router, etc. applications.
- Supports WPS (WiFi Protected Setup) interface.
- Supports Linux kernel 2.4/2.6.
- Support Mini-PCI/RGMII/MII interface.






## 2. Product Specification

| Product             | 802.11b/g/n Wireless LAN INIC Card                    |  |
|---------------------|-------------------------------------------------------|--|
|                     | Model Name: IN-7858MN                                 |  |
| Standard            | IEEE 802.11 b/g and IEEE 802.11n Draft 2.0            |  |
| Interface Type      | Mini-PCI/RGMII/MII                                    |  |
| Frequency Band      | 2.4000~2.4835GHz (Industrial Scientific Medical Band) |  |
| Modulation          | OFDM with BPSK, QPSK, 16QAM, 64QAM (11n)              |  |
|                     | OFDM with BPSK, QPSK, 16QAM, 64QAM (11g)              |  |
|                     | BPSK, QPSK, CCK (11b)                                 |  |
| Data Rate           | 11n (20MHz): MCS0-15, 32 with Half Guard Interval     |  |
|                     | Support (up to 144Mbps)                               |  |
|                     | 11n (40MHz): MCSO-15, 32 with Half Guard Interval     |  |
|                     | Support (up to 300Mbps)                               |  |
|                     | 11g: 54/48/36/24/18/12/9/6                            |  |
|                     | 11b: 11/5.5/2/1Mbps                                   |  |
|                     | auto fallback                                         |  |
| Antenna             | I-PEX Connector x 3                                   |  |
| OS                  | Linux Kernel 2.4/2.6                                  |  |
| Transmit Power      | 2.4GHz                                                |  |
|                     | -11b:17~18dBm                                         |  |
|                     | -11g:14~15dBm                                         |  |
|                     | -11n:13~15dBm                                         |  |
| Receive Sensitivity | 2.4GHz                                                |  |
|                     | -300Mbps OFDM, 10% PER, -65dBm                        |  |
|                     | -54Mbps OFDM, 10% PER, -74.5dBm                       |  |
|                     | -11Mbps CCK, 8% PER, -89dBm                           |  |
| Dimension           | 59.75(W) x 54.73(D) x 1.0(H)mm                        |  |
| Temperature         | 32~122°F (0~50°C)                                     |  |
| Humidity            | Max.95% (NonCondensing)                               |  |

#### 3. Hardware Architecture

#### Block Diagram



#### Main Chipset Information

| Item                | Model Number | Vendor |
|---------------------|--------------|--------|
| MAC/BBP/CPU         | RT2880       | Ralink |
| 11b/g/n Transceiver | RT2820       | Ralink |

#### Main Chipset Specification

#### MAC/Baseband Processor

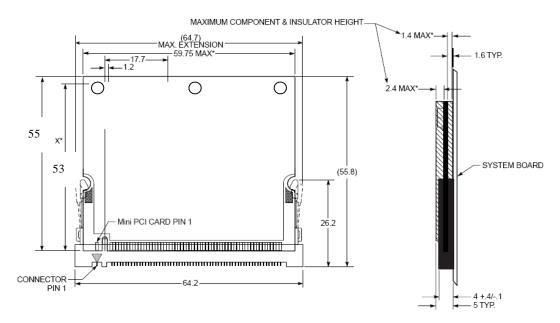
The RT2880 SOC combines Ralink's 802.11n draft compliant 2T3R MAC/BBP, a high performance 266-MHz MIPS4KEc CPU core, a Gigabit Ethernet MAC and a PCI host/device, to enable a multitude of high performance, cost-effective 802.11n applications. The RT2880 has two RF companion chips, the RT2820 for 2.4G-band operation and the RT2850 for dual band 2.4G or 5G operation. In addition to the traditional AP/router application, the chipset can be implemented as an WLAN "intelligent" NIC, drastically reducing the load on the host SOC, such as DSL/Cable or Multimedia Applications processors. Users can treat the WLAN iNIC as a simple Ethernet device for easy porting and guaranteed 802.11n WLAN performance without the need to upgrade to an expensive host SOC.

#### RT2880 MAC/BBP/CPU Features

- 802.11n MAC/BBP Interface
  - ➢ 2T3R 802.11n MAC/BBP
  - > 300Mbps PHY data rate
  - $\rightarrow$  1x1/1x2/1x3/2x1/2x2/2x3 modes
  - > 20Mhz/40Mhz channel width
  - Legacy and high throughout modes
  - > Reverse Data Grant (RDG) support
  - Compressed Block ACK
  - Dual-band: 2.4Ghz or 5Ghz
  - > Up to 256 clients
  - Multiple BSSID (up to 8)
  - ➢ WEP64/128, WPA, WPA2 engines
  - QOS WMM, WMM Power Save Hardware frame aggregation
  - Cisco CCX Support
  - International Regulation 802.11d + h
- MIPS4KEc Core
  - ➤ 266 MHz
  - > 16K I Cache, 16K D Cache
- Gigabit Ethernet MAC interface
  - > 10/100/1000Mbps auto detection
  - Support RGMII/MII interface
  - Scatter-Gather DMA
  - Interrupt mitigation
  - ▶ IEEE 802.3x Flow control
  - ➢ Full/Half duplex
  - High/Low priority queues
- 33/66Mhz PCI Host Controller
  - Embedded PCI Arbiter
  - Supports 2 PCI devices
  - PCI v2.2 Compliant
- PCI Device interface (WLAN iNIC)
  - > 33/66Mhz x 32-bit DMA master
  - Scatter-Gather DMA
  - Interrupt Mitigation
  - Simple Ethernet-like driver
  - > Ensures wireless LAN peak throughput
  - High/Low priority queues
- Peripherals

- ➢ UART x2
- GPIO x24 (shared)
- > SPI/PCM
- ► 12C
- JTAG
- > MDC/MDIO
- Packaging
  - 17mm x 17mm BGA-292 Package
  - I/O : 3.3V/2.5V(RGMII), 3.3/5V PCI I/O

#### 11b/g/n Transceiver


RT2820 is a monolithic SiGe RF IC that integrates multiple half-duplex direct-conversion radio transceivers designed for IEEE802.11b/g/n WLAN systems or other wireless LAN applications operating in 2.4GHz ISM bands. The IC has two concurrent transmit channels and three concurrent receive channels. The multiple channels are designed to improve robustness and throughput during wireless operation. Each receive channel achieves low noise figure, high input sensitivity, high linearity, and high output power while consuming low DC power. Each receive path features a gain selectable, low-noise amplifiers (LNA), followed by RF-to-baseband I/Q demodulators, discrete-step variable-gain amplifiers and integrated channel-selection filters. The transmit chain includes integrated reconstruction filters, a baseband-to-RF I/Q modulator, discrete-step variable-gain amplifiers for power-level control, and pre-drivers for external power amplifiers. The modulator and demodulator are driven by internal VCO. The VCO is phase-locked by an internal 3-wire-interface PLL. The bandwidth of the integrated channel-selection filters and the reconstruction filters can be programmed to narrow-band (10MHz) and wide- band (20MHz). Their bandwidth is calibrated by an internal autonomous calibration circuit. To help IQ mismatch calibration, a baseband transmit-to-receive loopback feature is provided. A crystal oscillator using external crystal and three low dropout regulators (LDO) are also integrated. The RT2820 is housed in a 76-pin 9x9mm2 leadless QFN package and is well suited for PCMCIA, MiniPCI, PCI, USB boards or embedded applications. It is designed to work seamlessly with RT2860B and RT2880 baseband/Mac IC.

#### RT2820 Transceiver Features

- 3 receivers and 2 transmitters
- 2.4-2.48 GHz band
- Low noise figure
- High linearity
- Low power consumption
- Integrated channel-selection filters
- Integrated reconstruction filters
- Power management/standby mode
- Integrated low dropout regulators
- Single supply 3.0 to 3.6V operation

### 4. Hardware Specification

#### • Mechanical Form Factor



#### • Transmit Power

| Channel                | Channel 1 | Channel 7 | Channel 13 |
|------------------------|-----------|-----------|------------|
| 11b                    | 17.75     | 17.41     | 17.51      |
| <b>11g</b> 15.13       |           | 15.23     | 15.35      |
| 11n (20MHz)* 15.4/15.2 |           | 15/15     | 15.1/15    |

| Channel                | Channel 3 | Channel 6 | Channel 9 |
|------------------------|-----------|-----------|-----------|
| 11n (40MHz)* 13.6/13.5 |           | 13.6/13.4 | 13.9/13.9 |

#### • Receiver Sensitivity

| Channel     | Channel 1        | Channel 7 | Channel 13 |
|-------------|------------------|-----------|------------|
| 11b         | -89              | -89       | -89        |
| 11g         | <b>11g</b> -74.5 |           | -74.5      |
| 11n (20MHz) | -68              | -68       | -68        |

| Channel     | Channel 3 | Channel 6 | Channel 9 |
|-------------|-----------|-----------|-----------|
| 11n (40MHz) | -65       | -65       | -65       |

## 5. Pin Specification

### • Pin Description

| Pin | Name    | Pin | Name          |
|-----|---------|-----|---------------|
| 1   | NC      | 2   | NC            |
| 3   | NC      | 4   | NC            |
| 5   | NC      | 6   | NC            |
| 7   | NC      | 8   | Wireless LED  |
| 9   | AP Mode | 10  | Reset Default |
| 11  | LED ACT | 12  | LED 2.4G      |
| 13  | NC      | 14  | LED 5G        |
| 15  | CHSGND  | 16  | Soft Reset    |
| 17  | INTB#   | 18  | NC            |
| 19  | 3.3V    | 20  | INTA#         |
| 21  | NC      | 22  | MA17          |
| 23  | GND     | 24  | 3.3AUX        |
| 25  | CLK     | 26  | RST#          |
| 27  | GND     | 28  | 3.3V          |
| 29  | REQ#    | 30  | GNT#          |
| 31  | 3.3V    | 32  | GND           |
| 33  | AD31    | 34  | NC            |
| 35  | AD29    | 36  | NC            |
| 37  | GND     | 38  | AD30          |
| 39  | AD27    | 40  | 3.3V          |
| 41  | AD25    | 42  | AD28          |
| 43  | MDC     | 44  | AD26          |
| 45  | C/BE3#  | 46  | AD24          |
| 47  | AD23    | 48  | IDSEL         |

| Pin | Name    | Pin | Name          |
|-----|---------|-----|---------------|
| 49  | GND     | 50  | GND           |
| 51  | AD21    | 52  | AD22          |
| 53  | AD19    | 54  | AD20          |
| 55  | GND     | 56  | PAR           |
| 57  | AD17    | 58  | AD18          |
| 59  | C/BE2#  | 60  | AD16          |
| 61  | IRDY#   | 62  | GND           |
| 63  | 3.3V    | 64  | FRAME#        |
| 65  | CLKRUN# | 66  | TRDY#         |
| 67  | SERR#   | 68  | STOP#         |
| 69  | GND     | 70  | 3.3V          |
| 71  | PERR#   | 72  | DEVSEL#       |
| 73  | C/BE1#  | 74  | GND           |
| 75  | AD14    | 76  | AD15          |
| 77  | GND     | 78  | AD13          |
| 79  | AD12    | 80  | AD11          |
| 81  | AD10    | 82  | GND           |
| 83  | GND     | 84  | AD9           |
| 85  | AD8     | 86  | C/BE0#        |
| 87  | AD7     | 88  | 3.3V          |
| 89  | 3.3V    | 90  | AD6           |
| 91  | AD5     | 92  | AD4           |
| 93  | GE_RXDV | 94  | AD2           |
| 95  | AD3     | 96  | AD0           |
| 97  | NC      | 98  | DISABLE_RF_TX |
| 99  | AD1     | 100 | WPS           |
| 101 | GND     | 102 | GND           |

| Pin | Name    | Pin | Name     |
|-----|---------|-----|----------|
| 103 | GE_RXD1 | 104 | MA11     |
| 105 | GE_RXD2 | 106 | GE_RXD0  |
| 107 | GE_RXD3 | 108 | GE_RXCLK |
| 109 | GE_TXEN | 110 | GE_TXCLK |
| 111 | GE_TXD3 | 112 | GE_TXD0  |
| 113 | GND     | 114 | GND      |
| 115 | GE_TXD1 | 116 | GE_TXD2  |
| 117 | GND     | 118 | GND      |
| 119 | GND     | 120 | GND      |
| 121 | MDIO    | 122 | MPCIACT# |
| 123 | NC      | 124 | 3.3V     |

#### • RGMII/MII interface

| Pin | Name     | I/O | Description                                           |
|-----|----------|-----|-------------------------------------------------------|
| 22  | HOST     | I   | MII/PCI Select. 1: RGMII/MII (Pull High) 0: PCI (Pull |
|     |          |     | Low)                                                  |
| 43  | MDC      | 0   | PHY Management Clock                                  |
| 93  | GE_RXDV  | I   | RGMII/MII RX Data Valid                               |
| 103 | GE_RXD1  | I   | RGMII/MII RX Data bit #1                              |
| 105 | GE_RXD2  | I   | RGMII/MII RX Data bit #2                              |
| 106 | GE_RXD0  | I   | RGMII/MII RX Data bit #0                              |
| 107 | GE_RXD3  | I   | RGMII/MII RX Data bit #3                              |
| 108 | GE_RXCLK | I/O | RGMII/MII RX Clock                                    |
| 109 | GE_TXEN  | 0   | RGMII/MII TX Data Enable                              |
| 110 | GE_TXCLK | I/O | RGMII/MII TX Clock                                    |
| 111 | GE_TXD3  | 0   | RGMII/MII TX Data bit #3                              |
| 112 | GE_TXD0  | 0   | RGMII/MII TX Data bit #0                              |
| 115 | GE_TXD1  | 0   | RGMII/MII TX Data bit #1                              |
| 116 | GE_TXD2  | 0   | RGMII/MII TX Data bit #2                              |
| 121 | MDIO     | I/O | PHY Management Data (RGMII/MII Select. 1: RGMII       |
|     |          |     | (Pull High) 0:MII (Pull Low))                         |